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A duality relation between an interface in a pinning 
potential and a modified Coulomb gas 
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Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 
3NP, UK 

Received 21 July 1981 

Ahtitract. The duality transformation between the discrete Gaussian model of a d- 
dimensional interface in a (d+l)dimensional bulk system and the Coulomb gas in d 
dimensions is extended to include a pinning force which tends to localise the interface 
either in the centre or near the edge of the bulk system. Arguments are given for the 
probable phase diagrams of each system. 

1. Introduction 

The behaviour of a &dimensional interface between oppositely magnetised, low- 
temperature phases of the (d + 1)-dimensional Ising model varies considerably with 
dimensionality. In the case of a one-dimensional interface in the planar Ising model, 
exact calculations (Gallavotti 1972, Abraham and Reed 1974) show that, at all finite 
temperatures, capillary fluctuations result in a divergence with the linear system size 
of the mean-square displacement of the interface from its ground-state position. For 
a two-dimensional interface in the three-dimensional Ising model there is extensive 
evidence (Dobrushin 1972, Weeks et a1 1973, van Beijeren 1977, Weeks and Gilmer 
1979) that the mean-square displacement diverges more weakly (logarithmically) at 
high temperatures, whilst below the roughening temperature fluctuations are finite 
and there is a sharp domain wall. In higher dimensions a simple consideration of the 
density of states for fluctuations, as well as more sophisticated arguments (Kosterlitz 
1977), predicts a sharp domain wall at all temperatures below the bulk transition. 
Recently there has been some interest in a variation on this problem. Abraham 
(1980) considered an inhomogeneous, planar Ising model with a row of weakened 
bonds next to one edge and showed by an exact solution that at low temperatures 
this pinning force localises the interface, and that at a transition temperature below 
the bulk critical point, the delocalised behaviour found in the homogeneous system 
is restored. Subsequently, several authors (Burkhardt 1981, Chalker 1981, Chui and 
Weeks 1981, Krolll981, van Leeuwen and Hilhorst 1981) have studied the solid-on- 
solid limit (Weeks et a1 1973) of this system, which greatly simplifies calculations. 
Similar results are found in this approximation when a pinning force acts at the edge 
of the system, but it has been realised by the same authors that a pinning force of a 
similar kind acting in the bulk will localise the interface at any temperature below 
the two-dimensional critical point. 
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In this paper, an attempt is made to understand the effects of such a pinning force 
in higher dimensions. The only previous work on this question of which we are aware, 
is a mean-field theory due to Burkhardt and Vieira (1981); the results presented here 
are in agreement with their main conclusions: that an interface will be localised by a 
bulk-pinning force, and will have an unbinding transition from an edge-pinning force, 
for all dimensionalities. However, a surprising difference which appears in mean-field 
theory between the behaviours of the solid-on-solid and Gaussian models is not found 
in the present work. 

The method used is to extend the well established duality relation (Chui and Weeks 
1976, JosB et a1 1977, Kosterlitz 1977) between the d-dimensional discrete Gaussian 
model of an interface in (d + 1) bulk dimensions and a d-dimensional Coulomb gas 
to include either a bulk-pinning force (§ 2), or a form of edge-pinning force (0 3). 
The resulting modified Coulomb gases contain, with a certain chemical potential, 
charges which take a continuous range of values and interact with the usual, integer 
charges. It is argued that, when present at a finite density, these continuous charges 
will have a sufficient screening effect to allow unbinding of integer charge pairs in the 
Coulomb gas, irrespective of dimensionality. The form of their chemical potential in 
the case of bulk pinning suggests that the continuous charges will be present at all 
temperatures in the related Coulomb gas, whilst for edge pinning their density will 
be zero below a transition temperature-corresponding to an unbound, high- 
temperature phase of the dual interface. Finally, the conclusions reached in this way 
are supported by very different reasoning applied directly to the interfacial models. 

2. The d d t y  relation for bulk pinning 

A general form for the Hamiltonian of an interfacial model which includes a pinning 
force is: 

where i, i + S label nearest-neighbour pairs of the N sites on a d-dimensional lattice 
(taken below to be cubical and subject to periodic boundary conditions) at which are 
columns of height hi, hi = 0, *l . . . f CO. The exchange energy parallel to the domain 
wall in the corresponding Ising model is proportional to J, and in the solid-on-solid 
model P = 1. It can be argued that excitations of the system for which Ihi - > 1 
are unimportant, and hence that the value of P is not crucial. The value P = 2 gives 
the discrete Gaussian model to which the duality relations described here apply. 
Similar results for the roughening transition of a two-dimensional interface have been 
derived for P =  1 (Weeks et a1 1973), P=2  (Chui and Weeks 1976), P=CO (van 
Beijeren 1977) and 1 ~ P ~ c o  (Emery and Swendsen 1977). Exact solutions in one 
dimension for the unbinding of an interface from an edge-pinning force give the same 
behaviour for P = 1 and P = CO (Chui and Weeks 1981). The value P = 00, the restricted 
solid-on-solid model, will be considered in § 4. A pinning potential is represented by 
V ( h ) :  in the case of bulk-pinning, we take V ( h )  = -ASh.o where Sh.0 is the Kronecker 
delta. The duality transformation follows that of Chui and Weeks (1976) closely. The 
partition function, Z, for the model can be written: 

N m  

Z =  n I dhi W({hi})e-PBe, 
i = l  --Jo 
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where 

and 
%‘o=zc 1 (hi - l~ i+6)~+2dH h?. 

i.6 i 

We are concerned with the behaviour in the limit H + 0. The integrations over {hi}  
can be performed after writing the delta functions in their Fourier integral representa- 
tion; the partition function becomes: 

z = z,zc (3) 
where 2, is the unrestricted partition function obtained by setting W({hi}) = 1 in 
equation (2), and Zc is the grand partition function for a modified Coulomb gas. 

2 
T 1 - exp[ik (rl - rm)] 

U(1, m ) = - - - C  

c=- “ e  
2dN k l - t$(k)+H ’ 

1 2 

2dN 1-t$(k)+H 

where p = -p’-’ ln(e*”’- 1) and t$ (k) = d-’ cos kn. There are N allowed values 
of k lying in one Brillouin zone of the reciprocal lattice. The temperatures of the 
dual systems are inversely related p’ = p-’ .  The asymptotic behaviour of U(1, m) for 
large Irl -rml in the limit H + 0 is (KosterIitz 1977) that of the d-dimensional Coulomb 
potential. 

The quantities {Pi}  are annealed random variables, and ir a given configuration 
the sites for which Pi = 0 are occupied by integer charges, qi, while sites with P = 1 
support charges with a continuous range of values. The scale for temperature in the 
Coulomb gas is set by the unit of charge (Kosterlitz 1977): if continuous charges are 
present their behaviour should be that of the usual (discrete) Coulomb gas at infinite 
temperature. They will therefore be in the metallic phase, in which charges are not 
bound together in pairs and correlations decay exponentially. Such a plasma of 
continuous charges will screen interactions between discrete charges so that these, 
too, are in a metallic phase. Since p (equation (4)) is always finite for A > 0 , a  > p’ > 0, 
we expect this modified Coulomb gas to contain a finite concentration, (Pi ) ,  of 
continuous charges and hence to be in the metallic phase at all non-zero temperatures, 
independently of dimensionality. We expect, equivalently, that a bulk-pinning force 
will always localise the dual interface. It is straightforward to relate the concentration 
of continuous charges in the Coulomb gas to the probability of finding the dual 
interface in the attractive part of the pinning potential 

(~i)%C~(~h,.O)Xi* ( 5 )  
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3. Edge pinning 

The type of edge pinning studied by Abraham (1980) corresponds to the choice for 
V ( h )  in equation (1) 

h <-$ 

:<h. 
V ( h ) =  -A - ‘ < h s $  2 -  (6) 

We have been unable to perform the duality transformation with this form for V ( h ) .  
However, it has been shown (Chalker 1981), following the general relationship 
between the statistical mechanics of a d-dimensional system and the quantum- 
mechanical ground state of a (d - 1)-dimensional system (Kogut 1979), that the 
behaviour of a one-dimensional interface in a potential V ( h )  is related to that of a 
quantum-mechanical particle moving in one dimension with position h, in the same 
potential. A more tractable choice for an edge-pinning potential with the same 
property as that of equation (6),  that a quantum-mechanical particle only has a bound 
state for sufficiently large values of A, is 

(7) V ( h )  = H-O lim {H(h  -H-1’z)2-A8(h)}. 

The transformation of the previous section can be repeated when Xo (equation (2)) is 
replaced by 

2 t o = $ C  (hj-hj+a)’+2dH (h j -H-1 /2 )2 .  
i, 6 i 

The result is given by equation (4), but with ~ ‘ X C  replaced by 

(prXc-2~iH-1’2 qi). 

This change affects only the contributions to Zc in which there are continuous charges. 
(If the limit H+O is taken in such a way that H-1’2 is integer, then 
exp(21riK”~ Xi qi) = 1 whenever Xi qi is integer.) For these configurations, in which 
Xi Pi p N  > 0, we change variables in the integrals for 2, and consider first integration 
over the net charge, defined as S = (pN)-’  Zi  qi; the factor this contributes to Zc is 

I=SP,dSexp[2rr~-”’pNS-p’S2C i. k [ C - U ( j , k ) b j p k + 2 p f S  x p ~ ; ~ ( j , k ) }  i. k (9) 

where ql = q i - S p i ,  so that X i q l  = O .  
In all configurations of {ql} for which limH,o limN,,(Xc/N) is finite, 

When X i  Pi = 0 there are no continuous charges and so this factor does not appear. 
The edge-pinning model is therefore described by equation (4), with the restriction 
Xi qi = 0 and a concentration-dependent chemical potential, p‘,  for continuous 
charges of 

p = o  

2d/p”-p[P‘- ’  1n(eA’@’- l)] p >o. 
The divergence of p‘  as p + 0 provides a clear driving mechanism, apparently similar 
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in all dimensionalities, for a transition at which the continuous charges disappear as 
temperature is lowered in the modified Coulomb gas. This corresponds to an unbinding 
at high temperatures of the dual interface from an edge-pinning potential. 

4. Discussion 

We now outline arguments applied directly to the interface models in support of the 
behaviour which has been suggested for their dual, modified Coulomb gases. Bulk 
pinning is treated first. 

A two-dimensional interface below the roughening transition, and interfaces of 
higher dimensionality, have a finite width, (h:)1'2, and so can have a lower energy 
(by -A(SoO)) per site, refering to canonical averages with respect to the Hamiltonian 
of equation (1), in a pinning potential, at no cost in entropy (per site, in the thermo- 
dynamic limit). A two-dimensional interface in a bulk-pinning potential above the 
roughening temperature will have a lower entropy, as well as a lower energy, than 
the free interface, since fluctuations must be restricted in order for (&,O) to be non-zero. 
To compare the importance of each we represent the restriction on fluctuations by 
a minimum wavenumber, qo, for these and calculate within the Gaussian model (Chui 
and Weeks 1976). The reduction in free energy in a bulk-pinning potential is, taking 

2 -1/2 (Sh.0) - (hi ) 7 

f (40 )  - - b T d  W / q d  + A[ln(1/q0)1-'/~ (12) 
for d = 2. Since f(4,,) is positive at all temperatures for A > 0 and sufficiently small 
40, bulk pinning will always localise an interface. 

To discuss edge pinning of a type more closely related to the problem considered 
by Abraham (1980) than that for which the duality relation was demonstrated, we 
compare two systems on identical lattices, both described by Hamiltonians of the form 
of equation (l), with P = m. For system (a), V ( h )  = 0, and for system (b), V ( h )  is 
given by equation (6); the condition hi = 0 is imposed on the boundaries of both. 
Every configuration, S, of (a), with energy E,, will consist of m, unconnected regions, 
within each of which all hi have the same sign, separated from one another by n, sites 
where hi = 0. A state S is completely specified by the value of ]hi /  on every site, 
together with the sign of hi in each region. All configurations, S', of (b) with finite 
energy have hi b O  for all i, so that 2". states of (a) are associated with one of (b). 
Define Z,, Zb to be the partition functions for (a), (b) respectively. Then 

&/Za = 2,' 1 exp(-PE, + P An, - m, In 2) 
S 

= (exp(P An, - m, In 2)), 

2 exp(PA(ns>a - (ms>a In 2) (13) 
where ( denotes a thermal average in the system (a). Whenever the free interface 
width is finite, (n,), and (m,), are extensive quantities, so it then appears plausible 
that the equality holds in equation (13), in the thermodynamic limit. The edge-pinning 
model, (b), will therefore show an unbinding transition as A is varied with p fixed, at 
a critical value 
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provided limN+oo(l/N)(n,), is finite. When the width of the free interface is 
unbounded, fluctuations are stronger and so an unpinned phase at high temperatures 
is also expected for a rough, two-dimensional interface. 

The inequality (equation (11)) can be illustrated by comparison with the exact 
solution for the one-dimensional restricted solid-on-solid model. In one dimension, 
it is clear that n, 3 m, for every state s. Hence the interface will certainly be pinned 
when P A  > In 2 ,  although that only provides a bound on the transition point since the 
equality cannot be assumed in this example. The actual transition point, from Chui 
and Weeks (1981) is 

(15) 

To summarise: the extension of a duality transformation on interfacial models to 
include pinning forces leads to modified forms for the dual Coulomb gases. The 
suggested behaviour of these Coulomb gases is borne out in one dimension by previous 
exact solutions of the interfacial models, and supported for higher dimensions by 
qualitative arguments which become quantitative if the unpinned interface has a finite 
width. 

AC = In[( 1 + 2 R ) / (  1 + R ) ]  < In 2 R = e-@J. 
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